If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x=76
We move all terms to the left:
x^2+20x-(76)=0
a = 1; b = 20; c = -76;
Δ = b2-4ac
Δ = 202-4·1·(-76)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-8\sqrt{11}}{2*1}=\frac{-20-8\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+8\sqrt{11}}{2*1}=\frac{-20+8\sqrt{11}}{2} $
| j=17=19 | | 2(3a+1)=7-a | | 25+8=12+x | | 6+x+2x=74 | | 2(2w+6+w)=228 | | 17x+30=(25+x) | | X/8=18/x | | 2(x+3)=3x+2+x | | 24-10(2n+4)=6(5n+1)-17n | | 9=7(2m+3)+6 | | 5x+-5=4x+-3 | | (x+10)^2-96=0 | | 3x-6/7(x+29)=48 | | 9=(2m+3)+6 | | -2+15=15x4-14x | | x-0.25x=465 | | 8y-16+1=180 | | Z2=8-6i | | 3x+6/7x=48 | | --3(2r+7)=3 | | 3x-6/7x+29=48 | | -2-|-3x-6|=-11 | | 25x^2=196 | | 2x^2-1/3x-9/4=-12 | | 4w-24=3w=3 | | -1k+2=2k+-4 | | 50-10y=-2(5y-25) | | 17+4h+2=1-5 | | 5-4x=(-3) | | -1h+2=2h+1 | | -5b−14b+17=-12b−18 | | 2x^2-6x=-30 |